Project Name: NLP Harry Potter continuation of NLP Project Project Type: optional solo project

Project Goals:

Continuing from partner NLP project. Using a different data set will results be better?

Does reducing the imbalance in data sampling improve performance?

Original Goals:

Can the programming language of a GitHub repository be predicted from the text of the README document? Create a dataset of GitHub readme documents, Explore using NLP techniques, Build a model that predicts the programming language using NLP techniques to extract features and classification algorithms for prediction. Deliverables: Well documented Jupyter Notebook

Stage	Tools	Brief Description of Process	Challenge Resolution
Plan	 Visual Studio 	 Continuation of NLP Project What are the results with a different dataset? Does fixing data imbalance improve performance? 	•
Acquire	 Visual Studio .py scripts 	 Using web-scrapping functions already built get a dataset for repos that include "Harry Potter" 	 No unusual challenges in this section had already built functions
Prepare	 Visual Studio .py scripts 	 Additional stop words added that were found to be common to all languages after 1st run added stop words of "harry", "potter", "run"," file", and "house" after 2nd run added stop words " ", "use" 	 No unusual challenges in this section
Explore	 Jupyter 	 Javascript was over represented in the 	Used same code from

	Notebook • Seaborn • Matplotlib • Stats • Sklearn	 dataset Visualized the top 20 most common words by language Visualed bi-grams by language 	NLP project
Model	 Jupyter Notebook Sklearn Multiple ML models tested 	 Used Bag of Words and TF-IDF as vetorizors Repeated model process and evaluation as previously Established baseline of 39% by predicting all would be most common = Javascript Logistic Regression and Random Forest performed about the same. Logistic Regression had 53% accuracy and Random Forrest had 51% accuracy 	 Used same code from NLP project
Next Step	 Jupyter Notebook Sklearn 	 Resampled data using SMOTE Accuracy was only slightly better on unseen data after balancing dataset HOWEVER, there was a 14% improvement in average F1 score after balancing 	 Used same code from NLP project
Model Explanation	How does your algorithm work?	 Technically a regression algorithm (Goal is to find the values for the coefficients that weight each input variable). Used to predict binary outcomes. The output is a value between 0 and 1 that represents the probability of one class over the other 	 No unusual challenges in this section