
Project Name: Natural Language Processing Project
Project Type: Required partner project

Project Goals:
Can the programming language of a GitHub repository be predicted from the text of the README document?
Create a dataset of GitHub readme documents, Explore using NLP techniques, Build a model that predicts the
programming language using NLP techniques to extract features and classification algorithms for prediction.
Deliverables: Well documented Jupyter Notebook, slide deck, and 5 min presentation

Stage Tools Brief Description of Process Challenge Resolution

Plan ● Visual
Studio

● Obtained requirements from curriculum
● Decided on subject for dataset gathering
● With partner determined MVP questions to

answer for general audience
● Established workload timeline and split up

tasks for each of us to address

● No unusual challenges in
this section

Acquire ● Visual
Studio

● .py script

● Built function to get urls from 1st search
page and then get the readme text and
language (if present) and return dataframe.

● Broadened function to get urls from multiple
search pages

● Scraped 100 search pages with 10 urls each
with filtering for only those with readme and
language returned 800 observations

● First time using web
scraping to obtain data

● Error getting data from more
than 10 pages - used sleep
function - could have/should
use GitHub API for this

Prepare ● Visual
Studio

● .py script
● Jupyter

Notebook

● Identified the 4 most common languages
and filter data to include only those
observations (reduced dataset to approx
400 rows)

● Cleaned data (lowercase, convert to only

● First time using regex

ascii characters and recode to utf-8), use
regex to remove anything not a-z, 0-9, or a
space

● Tokenized using NLTK Toktoktokenizer,
removed stopwords, then created column of
stemmed vs lemmatized words

● Split dataset into train, validate, test, and
returned additional train_explore dataset

Explore ● Jupyter
Notebook

● Visual
Studio

● Checked for imbalance in the dataset
language distribution

● Found top 5 words for each language type
and discovered 3 words were common to
all, returned to prepare and added ‘file’,
‘data’, and ‘environmental’ to the stopwords
list

● Created visualization of distribution of top 20
words by by language

● Performed hypothesis test to determine if
the length of the readme text was
significantly different from the overall mean
length. It was not for 3 of the languages,
only HTML showed significance

● Functions are found in explore.py

● Did not use word cloud with
question mark mask in final
notebook, but included the
visualization in the slide
deck

Model ● Jupyter
Notebook

● Visual
Studio

● Partner extracted features using both Bag of
Words (BOW) and TF-IDF (Term
Frequency-Inverse Document Frequency).

● Established a baseline of 35% by predicting
the most frequent language (Python) for all
observations

● Then used multiple classification models to
predict the language including Logistic

● Model results accuracy
were disappointing and
under other class teams.
Scheduled office time with
instructor to review process
to ensure I implemented
everything correctly

Regression, Decision Tree, Random Forest,
K Nearest Neighbors (KNN), and both
multinomial and complement Naive Bayes

● Functions are found in model.py

Evaluate ● Jupyter
Notebook

● Visual
Studio

● Top 3 models based on accuracy were run
on the validate data and the best
performing, the Logistic Regression using
TF-IDF was run on the test set. The final
result was an average of 47% accuracy on
unseen data.

● Functions are found in model.py

● Partner created the
functions to return
evaluations

Model
Explanati
on

How does your
algorithm
work? ● From curriculum

● Technically a regression algorithm (goal is
to find the values for the coefficients that
weight each input variable)

● Used for predicting discrete outcomes
(binomial and multinomial)

● Because the prediction for the output is
transformed using the logistic function, a
non-linear function, it is a classification
algorithm.

● The output is a value between 0 and 1 that
represents the probability of one class over
the other.

● Like linear regression, logistic regression
works better when you remove attributes
that are either unrelated to the output
variable or correlated to other attributes.

Delivery ● Jupyter
Notebook

● Canva

● Partner create slide deck using Canva
● I added Summary, Conclusions, and Next

Steps to the Final Jupyter Notebook

● No unusual challenges in
this section

