
Project Name: Telco Churn Classification Project
Project Type: Required solo project

Project Goals:
Find drivers for customer churn.
Construct a ML classification model that accurately predicts customer churn.
Include conclusions
Create modules that make your process repeatable - readme.md, data_dictionary.md, acquire.py, prepare.py,
.csv file with all predictions and actual values by customer_id, documented .ipnb with 5 min walk through
Document your process well enough to be presented or read like a report using Jupyter Notebook.

Stage Tools Brief Description of Process Challenge Resolution

Plan ● Visual
Studio

● In Visual Studio create a new readme.md file
to outline project plan

● Import key elements and deliverables from
curriculum requirements

● Add storytelling elements

● Noted that we were given
clearer expectations than
usual for this assignment

Acquire ● Visual
Studio

● MySQL
● .py script
● SQL query
● Query

function

● In Visual Studio create a new acquire.py file
to obtain data from Codeup Telco Churn
database

● Used scripts I had previously created for
other database queries and adapted for this
file

● Note for documentation that user will need
access to Codeup databases in order to
replicate

● Use MySQL to write and verify SQL query

● No unusual challenges in
this section

● Python libraries needed:
○ Pandas
○ Seaborn
○ Matplotlib
○ Numpy
○ Scipy
○ Sklearn

Prepare ● Visual
Studio

● .py script
● Jupyter

Notebook
● Matplotlib

● In Visual Studio create a new prepare.py file
● Started from scripts I had previously created
● Assess overall data and determine where

columns need to be encoded
● Plot individual variables
● Asses for null and duplicate values
● Convert total_charges from string to float

and drop resulting null values
● Add years_tenure feature
● Add extra_services feature
● Changed text response “No Phone Service”

and “No Internet Service” to “No” for first
iteration

● Drop duplicate columns and rename
remaining columns

● Identify target variable = churn
● Split into train, validate, and test datasets for

exploration stage

● Drop columns function not
working, unable to get this
working for this project

● Added remove duplicates
for future use

● Converting to float using
.astype not working for
total_charges

● Googled alternative
.to_numeric and added
flag ​errors​=​'coerce'

● Did not remove tenure less
than 1 month for this
iteration

● Initially decided to drop
Customer_id, but put back
in to assist in create
predictions.csv

Explore ● Jupyter
Notebook

● Seaborn
● Scipy.stat

s
● Matplotlib

● Recreated prepare visualizations adding
churn

● This identified Fiber Optic as group for
further analysis

● Visualize extra_services with monthly
charges and churn

● This identified tipping point at 4 and under vs
5 and over count of additional services as
subgroup for investigation

● Set up Hypothesis tests for: do those who
pay more, churn more? And: do those who
have been with us less time pay more?

● Confirmed average monthly payment is
higher for those who churn

● Hardest challenge was
finding starting point for
investigation

● Challenging to convert
initial hypothesis question
into statistically testable
hypothesis

● Challenging to translate
what I want to see into
code needed to produce
charts and/or metrics

● Positive linear relationship exists between
monthly charges and tenure, but the
relationship is weak based on r=.22

Model ● Jupyter
Notebook

● Sklearn

● 1st machine learning project so decided to
make 1 model of each classification type
using all features and primarily default
hyperparameters

● Established Baseline accuracy
● Decision Tree set max depth as half of the

number of features to reduce potential
overfit

● Random Forest set max depth at ¾ of
features and increase min leaf to 5, left
n_estimators at 100

● Logistic Regression used default
hyperparameters

● K Nearest Neighbors set K=¼ of features

● No unusual challenges in
this section

Evaluate ● Jupyter
Notebook

● Sklearn

● Focused solely on accuracy as measure of
performance in this iteration

● Found Random Forest and Decision Tree
had best performance on training dataset

● Ran both models on validate dataset and
found Decision Tree accuracy performance
declined indicating it was overfit on training
data

● Ran only Random Forest on test dataset
● Found consistent accuracy of 87%-88% for

this model on all 3 datasets
● That is a significant improvement over the

baseline accuracy: 73%

● No unusual challenges in
this section

Model
Explanation

How does your
algorithm work?

(For example, if
your best ML
model used a
Random Forest
Classifier, how
does that
algorithm work?)

● Random forest is a type of ensemble ML
algorithm called Bootstrap Aggregation or
bagging.

● You take lots of samples of your data,
calculate the mean, then average all of your
mean values to give you a better estimation
of the true mean value

● Multiple samples of your training data are
taken and models are constructed for each
sample set

● When you need to make a prediction for new
data, each model makes a prediction and
the predictions are averaged to give a better
estimate of the true output value.

● Random forest is a tweak on this approach
where decision trees are created so that
rather than selecting optimal split points,
suboptimal splits are made by introducing
randomness.

● I think of Random Forest
as taking many Decision
Trees and then combining
their predictions results in
a better estimate of the
true underlying output
value.

Delivery ● Jupyter
Notebook

● .csv file

● Used combination of markdown cells in
Jupyter Notebook and commented out text
within code cells to document process and
explain code and charts

● Added agenda, Executive Summary, and
Conclusions for walk through

● Had to figure out how to
get predictions, actuals,
and customer_id into
single pandas dataframe
then write to .csv file

● Markdown in Jupyter
Notebook doesn’t always
print correctly once
uploaded to github

● 5 minute presentation time
was particularly
challenging to stay within

