Project Name: Telco Churn Classification Project Project Type: Required solo project

Project Goals:

Find drivers for customer churn.

Construct a ML classification model that accurately predicts customer churn.

Include conclusions

Create modules that make your process repeatable - readme.md, data_dictionary.md, acquire.py, prepare.py, .csv file with all predictions and actual values by customer_id, documented .ipnb with 5 min walk through Document your process well enough to be presented or read like a report using Jupyter Notebook.

Stage	Tools	Brief Description of Process	Challenge Resolution
Plan	 Visual Studio 	 In Visual Studio create a new readme.md file to outline project plan Import key elements and deliverables from curriculum requirements Add storytelling elements 	 Noted that we were given clearer expectations than usual for this assignment
Acquire	 Visual Studio MySQL .py script SQL query Query function 	 In Visual Studio create a new acquire.py file to obtain data from Codeup Telco Churn database Used scripts I had previously created for other database queries and adapted for this file Note for documentation that user will need access to Codeup databases in order to replicate Use MySQL to write and verify SQL query 	 No unusual challenges in this section Python libraries needed: Pandas Seaborn Matplotlib Numpy Scipy Sklearn

Prepare	 Visual Studio .py script Jupyter Notebook Matplotlib 	 In Visual Studio create a new prepare.py file Started from scripts I had previously created Assess overall data and determine where columns need to be encoded Plot individual variables Asses for null and duplicate values Convert total_charges from string to float and drop resulting null values Add years_tenure feature Add extra_services feature Changed text response "No Phone Service" and "No Internet Service" to "No" for first iteration Drop duplicate columns and rename remaining columns Identify target variable = churn Split into train, validate, and test datasets for exploration stage 	 Drop columns function not working, unable to get this working for this project Added remove duplicates for future use Converting to float using .astype not working for total_charges Googled alternative .to_numeric and added flag errors='coerce' Did not remove tenure less than 1 month for this iteration Initially decided to drop Customer_id, but put back in to assist in create predictions.csv
Explore	 Jupyter Notebook Seaborn Scipy.stat s Matplotlib 	 Recreated prepare visualizations adding churn This identified Fiber Optic as group for further analysis Visualize extra_services with monthly charges and churn This identified tipping point at 4 and under vs 5 and over count of additional services as subgroup for investigation Set up Hypothesis tests for: do those who pay more, churn more? And: do those who have been with us less time pay more? Confirmed average monthly payment is higher for those who churn 	 Hardest challenge was finding starting point for investigation Challenging to convert initial hypothesis question into statistically testable hypothesis Challenging to translate what I want to see into code needed to produce charts and/or metrics

		 Positive linear relationship exists between monthly charges and tenure, but the relationship is weak based on r=.22 	
Model	 Jupyter Notebook Sklearn 	 1st machine learning project so decided to make 1 model of each classification type using all features and primarily default hyperparameters Established Baseline accuracy Decision Tree set max depth as half of the number of features to reduce potential overfit Random Forest set max depth at ³/₄ of features and increase min leaf to 5, left n_estimators at 100 Logistic Regression used default hyperparameters K Nearest Neighbors set K=¹/₄ of features 	 No unusual challenges in this section
Evaluate	 Jupyter Notebook Sklearn 	 Focused solely on accuracy as measure of performance in this iteration Found Random Forest and Decision Tree had best performance on training dataset Ran both models on validate dataset and found Decision Tree accuracy performance declined indicating it was overfit on training data Ran only Random Forest on test dataset Found consistent accuracy of 87%-88% for this model on all 3 datasets That is a significant improvement over the baseline accuracy: 73% 	 No unusual challenges in this section

Model Explanation	How does your algorithm work? (For example, if your best ML model used a Random Forest Classifier, how does that algorithm work?)	 Random forest is a type of ensemble ML algorithm called Bootstrap Aggregation or bagging. You take lots of samples of your data, calculate the mean, then average all of your mean values to give you a better estimation of the true mean value Multiple samples of your training data are taken and models are constructed for each sample set When you need to make a prediction for new data, each model makes a prediction and the predictions are averaged to give a better estimate of the true output value. Random forest is a tweak on this approach where decision trees are created so that rather than selecting optimal split points, suboptimal splits are made by introducing randomness. 	 I think of Random Forest as taking many Decision Trees and then combining their predictions results in a better estimate of the true underlying output value.
Delivery	 Jupyter Notebook .csv file 	 Used combination of markdown cells in Jupyter Notebook and commented out text within code cells to document process and explain code and charts Added agenda, Executive Summary, and Conclusions for walk through 	 Had to figure out how to get predictions, actuals, and customer_id into single pandas dataframe then write to .csv file Markdown in Jupyter Notebook doesn't always print correctly once uploaded to github 5 minute presentation time was particularly challenging to stay within